MICROBIOLOGY AND INVASIVE FUNGAL INFECTION

Javier Pemán, MD, PhD

Mycology Unit, Hospital Univ. La Fe Valencia (Spain)
What tools we can offer to optimize antifungal treatment?

From lab Bench to Bedside:

✓ Improve the IFI diagnostic

✓ Optimize information about *in vitro* antifungal susceptibility
What tools we can offer to optimize IFI diagnosis?

- **↑ the sensibility of techniques:**
 - Adding Direct Microscopy to culture
 - Sending new samples if culture (-) after 5 days

- **Quicker results:**
 - Direct microscopy
 - Molecular techniques (Septifast®)
 - New techniques (PNA FISH®)
Direct microscopy

- **Utility:**
 - Quick presumptive diagnosis (min)
 - Early antifungal treatment

- **Efficacy:**
 - Depends on observer’s experience

- **Inconvenience:**
 - The identification of causal agent is not possible
Sensibility of diagnosis: 15 - 20% > Culture alone

Denning, CID 1998
Samples:
- Sterile fluids, biopsies
- Respiratory (BAL, TA, BAS)
- Abscess, wound, ...

Techniques:
- KOH (wet mount)
- Phase contrast (wet mount)
- Specific stains:
 - Calcofluor white (wm)
 - Methenamine-silver
 - PAS
Direct microscopy

© J. Pontón

Calcofluor white
What tools we can offer to optimize IFI diagnosis?

- If fungal cultures (-) after 5 days …
 → collect and culture new samples

Old legends never die...
Time of fungal pathogen growth in clinical samples

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Number strains</th>
<th>Detection average (d)</th>
<th>Detection maximum (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>191</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>21</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Candida spp. no albicans</td>
<td>45</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Cryptococcus neoformans</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Rhodotorula spp.</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Aspergillus spp.</td>
<td></td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Fusarium spp.</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Phycomycetes spp.</td>
<td>4</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Trichosporon asahii</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Acremonium spp.</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Morris, J Clin Microbiol 1996

If (-) after 5 days, → new cultures

Mean 4.5 days
Blood culture
Speed of growth

- 415 candidemias La Fe Univ. Hospital (2004-2010):
 - Average: 36.8 h (2.2 h – 7.5 d)
 - Median: 31.5 h

- **C. albicans**: 33.7 h (8.7 h - 5.6 d)
- **C. parapsilosis**: 30.7 h (2.2 h - 5 d)
- **C. glabrata**: 35.5 h (7.5 h - 5.1 d)
- **C. tropicalis**: 18.1 h
Blood culture
Speed of growth

Time

- 24 h: 28%
- 36 h: 62%
- 48 h: 85%
- 72 h: 93%

If (-) after 2 days, → new blood cultures
What tools we can offer to optimize IFI diagnosis?

- Sensibility of techniques:
 - Adding Direct Microscopy to culture
 - Sending new samples if culture (-) after 5 days

- Quicker results:
 - Direct microscopy
 - Molecular techniques (Septifast®)
 - New techniques (PNA FISH®)
PNA FISH

Peptide Nucleic Acid Fluorescent In-situ Hybridization

Positive Blood Culture

Gram Stain

Results (2.5 Hrs.)

S. aureus
PNA FISH™

C. albicans
PNA FISH™

E. faecalis
PNA FISH™

S. aureus
non-S. aureus GPCC

C. albicans
non-C. albicans Yeast

E. faecalis - Green
other enterococci GPCPC

non-enterococci - Red

AdvanDX; Woburn, MA
Peptide Nucleic Acid Fluorescent In-situ Hybridization

- C. glabrata / C. krusei
- C. tropicalis
- C. albicans / C. parapsilosis

Yeast Traffic Light PNA FISH™

Forrest GN, Curr Fun Infect Rep 2008; 2:221-6
Molecular diagnosis

LightCycler® SeptiFast Test

• The first PCR technique for multiple detection of sepsis pathogens

• Real time PCR (qualitative)

• Detects 90% of causal agents of bacteriemia/fungemia

• Commercialized in Europe (CE Mark) January 2006

• Not in USA
Detect and identify DNA of 25 bacterial and fungal pathogens directly from whole blood (EDTA) in less than 6 hours:

<table>
<thead>
<tr>
<th>Gram (-)</th>
<th>Gram (+)</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Staphylococcus aureus</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>Klebsiella (pneumoniae / oxytoca)</td>
<td>CoNS (Coagulase negative Staphylococci)</td>
<td>Candida tropicalis</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>Streptococcus pneumoniae</td>
<td>Candida parapsilosis</td>
</tr>
<tr>
<td>Enterobacter (cloacae / aerogenes)</td>
<td>Streptococcus spp.</td>
<td>Candida krusei</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>Enterococcus faecium</td>
<td>Candida glabrata</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Enterococcus faecalis</td>
<td>Aspergillus fumigatus</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*S. epidermidis, S. haemolyticus **S. pyogenes, S. agalactiae, S. mitis*
Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis

Christine Dierkes*1, Boris Ehrenstein1, Sylvia Siebig1, Hans-Jörg Linde2, Udo Reischl2 and Bernd Salzberger1

- 77 patients with suspected sepsis
- 101 blood samples:
 - Blood culture (BC): Bactec 9240
 - Septifast (SF)

- Concordant negative results: 62%
- Concordant positive results: 13%
- BC positive only: 9%
- SF positive only: 13%

Table 3: Isolated Pathogens: Pathogens identified in BC or SF; 7 samples yielded polymicrobial results.

<table>
<thead>
<tr>
<th>Species</th>
<th>SeptiFast®</th>
<th>Blood culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter cloacae/aerogenes</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Streptococcus species</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida krusei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>28</td>
</tr>
</tbody>
</table>

Fungal pathogens:
- Detected by SF: 6
- Detected by BC: 4
- Detected by SF only: 3

Dierkes C. BMC Infect Dis 2009, 9:126
What tools we can offer to optimize antifungal treatment?

From lab Bench to Bedside:
✓ Improve the IFI diagnostic
✓ Optimize information about *in vitro* antifungal susceptibility
To improve in vitro susceptibility techniques:

- Faster techniques:
 - Sensititre YeastOne
 - Etest

Wider knowledge about IFI epidemiology:

- Own hospital vs. other hospitals
- Own geographical region vs. other regions
- Own country vs. other countries
Correlation using logistic regression between percentage reduction of *C. albicans* isolation rates and fluconazole use [DDDs per year].

C. albicans and Candida non albicans isolate rates during study period.

Bassetti M et al. BMC Infectious Diseases 2006;6:80
FUNGEMYCA Study (1,383 episodes)

13 months of candidemias in Spain (2009-2010)
Number of participant institutions from Spanish regions

Total: 43
FUNGEMYCA Study (1,383 episodes)

13 months of candidemias in Spain (2009-2010)

Isolates distribution by hospital unit

%
FUNGEMYCA Study (1,383 episodes)

13 months of candidemias in Spain (2009-2010)

% species isolated

- **C. albicans**: 43%
- **C. parapsilosis**: 30%
- **C. glabrata**: 11%
- **C. tropicalis**: 8%
- **Otras**: 8%
FUNGEMYCA Study (1,383 episodes)

13 months of candidemias in Spain (2009-2010)

% species isolated

30
54
4 6 5

Hospital Univ La Fe (79 episodes)

C albicans
C parapsilosis
C glabrata
C tropicalis
Otras

FUNGEMYCA Study (1,383 episodes)

13 months of candidemias in Spain (2009-2010)

% species isolated

30
54
4 6 5

Hospital Univ La Fe (79 episodes)

C albicans
C parapsilosis
C glabrata
C tropicalis
Otras
% species isolated in ICU

427 episodes (36,8%)
Increasing incidence of *Candida parapsilosis* candidemia with caspofungin usage

Graeme N. Forrest a,*, Elizabeth Weekes b, Jennifer K. Johnson c

<table>
<thead>
<tr>
<th>Species</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.28</td>
<td>0.40</td>
<td>0.31</td>
<td>0.39</td>
<td>0.48</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>0.23</td>
<td>0.17</td>
<td>0.21</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>0.05</td>
<td>0.06</td>
<td>0.12</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.09</td>
<td>0.09</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>C. krusei</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>Overall</td>
<td>0.69</td>
<td>0.73</td>
<td>0.71</td>
<td>0.80</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antifungal</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspofungin</td>
<td>3.91</td>
<td>4</td>
<td>6.96</td>
<td>11</td>
<td>6.61</td>
</tr>
<tr>
<td>Micafungin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>84.2</td>
<td>86.2</td>
<td>104.4</td>
<td>84.4</td>
<td>85.7</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>0</td>
<td>47.6</td>
<td>80.1</td>
<td>61.3</td>
<td>72.5</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>23.8</td>
<td>13.9</td>
<td>3.2</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>31.6</td>
<td>27</td>
<td>18</td>
<td>16.6</td>
<td>10.9</td>
</tr>
</tbody>
</table>

* Lipid formulation
Candidemias ICUs
H Univ. La Fe

392 episodes

%
Candidemias adults ICUs
H Univ La Fe, 2008-2009

75 episodes

% species isolated

Surgery ICU

Medical ICU

C albicans
C parapsilosis
C glabrata
C tropicalis
Otras

41
6
6
27
2
5
2
64
47
Candidemias in Spain

Comparison between different multicenter studies
(1997-1999 vs. 2009)

% species isolated

2009 (1,383 episodes)

1997-1999 (290 episodes)

Candidemias in Europe

Comparison between Spain and Finland

% species isolated

1997-1999 (290 episodes)

1995-1999 (479 episodes)
Poikonen E, Emerg Infect Dis 2003; 9:985-90
Study of antifungal susceptibility of clinical isolates
<table>
<thead>
<tr>
<th></th>
<th>MIC</th>
<th>CAS</th>
<th>ANI</th>
<th>FLZ</th>
<th>ITR</th>
<th>VOR</th>
<th>POS</th>
<th>5FC</th>
<th>AMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>1.8</td>
<td>2.4</td>
<td>2.2</td>
<td>2.2</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>1.4</td>
<td>0</td>
<td>1.7</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>1.1</td>
<td>0</td>
<td>1.1</td>
<td>7.4</td>
<td>16</td>
<td>8.5</td>
<td>11</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>7.8</td>
<td>24</td>
<td>0.6</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. krusei</td>
<td>4.1</td>
<td>8.3</td>
<td>4.1</td>
<td>***</td>
<td>4.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.3</td>
<td>2.6</td>
<td>2</td>
<td>4</td>
<td>5.8</td>
<td>2.1</td>
<td>3.9</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

(1,152 isolates)
Kiitos...